Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(23): eabm5180, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675409

RESUMO

Quantum materials are notoriously sensitive to their environments, where small perturbations can tip a system toward one of several competing ground states. Graphene hosts a rich assortment of such competing phases, including a bond density wave instability ("Kekulé distortion") that couples electrons at the K/K' valleys and breaks the lattice symmetry. Here, we report observations of a ubiquitous Kekulé distortion across multiple graphene systems. We show that extremely dilute concentrations of surface atoms (less than three adsorbed atoms every 1000 graphene unit cells) can self-assemble and trigger the onset of a global Kekulé density wave phase. Combining complementary momentum-sensitive angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED) measurements, we confirm the presence of this density wave phase and observe the opening of an energy gap. Our results reveal an unexpected sensitivity of the graphene lattice to dilute surface disorder and show that adsorbed atoms offer an attractive route toward designing novel phases in two-dimensional materials.

2.
Sci Adv ; 5(11): eaaw5593, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723598

RESUMO

Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T, enabling the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...